校园新闻
杰出学者讲坛

发布日期:2020-06-10 字号:  点击次数:

报告题目:

Ruelle–Pollicott resonances of stochastic systems and a new approach to stochastic bifurcations

主讲人: Mickaël D. Chekroun,Weizmann Institute of Science & UCLA

报告时间:202061116:30

报告地点:青岛校区华岗苑东楼119报告厅/ZOOM: 159 801 0503

主讲人简介:

The work of Dr. Chekroun is at the confluence zone between the theory of stochastic/nonlinear dynamics and functional analysis (semigroup theory).His work at the interface of Mathematics and climate science has been crowned by the several grants awarded by major US governmental agencies including the Department of Energy (DOE), the Mathematical Division of the National Science Foundation (NSF), the Machine Learning, Reasoning and Intelligence program of the Office of Naval Research (ONR), and the Applied and Computational Analysis program of the ONR.

摘要:

In this talk, a theory of Ruelle–Pollicott (RP) resonances for systems of stochastic differential equations (SDEs) will be presented, valid for a broad class of stochastic systems. Roughly speaking, RP resonances are defined, in the stochastic context, as the eigenvalues of the generator (Kolmogorov operator) of a given stochastic system. By relying on the theory of Markov semigroups and the spectral theory of semigroups, decomposition formulas of correlation functions and power spectral densities (PSDs) in terms of RP resonances will be then presented (Chekroun et al., 2020).

By extending the results of (Chekroun et al., 2014), it will be explained how a notion of reduced RP resonances can be rigorously framed, as soon as the dynamics is partially observed within a reduced state space V. Applications to the detection and characterization of such stochastic nonlinear oscillations in a high-dimensional stochastic system, namely the Cane-Zebiak model of El Niño-Southern Oscillation (ENSO) (Cao et al., 2019) subject to noise modeling fast atmospheric fluctuations, will be finally discussed.

 


【 作者:数学与交叉科学研究中心  来源:数学与交叉科学研究中心   责任编辑:刘芳 】

下一条:Ergodicity on Sublinear Expectation and Capacity Spaces

请遵守《互联网电子公告服务管理规定》及中华人民共和国其他有关法律法规。
用户需对自己在使用本站服务过程中的行为承担法律责任。
本站管理员有权保留或删除评论内容。
评论内容只代表网友个人观点,与本网站立场无关。
 匿名发布 验证码 看不清楚,换张图片
0条评论    共1页   当前第1
最新新闻

办公地址:山东省青岛市即墨滨海路72号   邮编:266237     E-mail:sduqdxq@sdu.edu.cn        

版权所有@山东大学   鲁ICP备案 05001952号   

访问量: